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MAGAZINE Op-ed: Water Pollution in Iowa Is Environmental
OUR LATEST EMAILSIGNUP POLITICO.COM | § | Injustice

White farmers in the state’s corn, soy, and hog industries are turning a blind eye to
the nitrate pollution impacting Black, brown, and low-income residents most.

BY CHRIS JOMES = 2 1

WHAT WORKS

Iowa’s Nasty Water War

Des Moines’ lawsuit against farming counties is about more than just
pollution.
By CLAY MASTERS | January 21, 2016

AP Photo

Clay Masters is a reporter for Iowa Public Radio.

year ago, the Des Moines Water Works, the state of Iowa’s largest water utility, filed suit
against three rural counties, charging that for years they had been polluting the city’s
drinking water with impunity. In lowa, where courtesy and cooperation rule, this was

tantamount to a declaration of war.
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What are Nature-Based-Solutions?
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What is the
appropriate scale for
studying wetland
functions?

WETLANDSCAPE

...a need to consider the large-scale
functioning of the hydrologically

coupled SYSTEM of multiple

wetlands and their total hydrological
catchment

Thorslund et al. 2017

“the scale must be enlarged from the
individual wetland project to include
the broader landscape. Only this
broader view can provide the context
within which decision-makers can
evaluate the potential cumulative

effects of individual mitigation
decisions on broad-scale patterns of
wetland diversity”.
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https://www.sciencedirect.com/topics/earth-and-planetary-sciences/cumulative-effects
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Signatures of human impact: size distributions
and spatial organization of wetlands in the Prairie Pothole landscape
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Objectives

To better our understanding of
the size distribution and spatial
organization of historical
wetlands
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IT is therefore our objective in the current work to better our understanding of the size distribution and spatial organization of historical wetlands
And to explore the role of human impacts in historical patterns
As a means of improving our ability to establish criteria wetland conservation work
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Des Moines
Lobe
Prairie
Potholes

Farmed Wetlands

“farmed areas that in most £
years have standing water

for at least 7 consecutive
days or saturated soils for
14 consecutive days during
the growing season”
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A farmed area that in most years has standing water for at least seven consecutive days or saturated soils for 14 consecutive days during the growing season



Methodology

2008 Satellite image,

LiDAR and Soil Survey >tory County, lowa
data used to identify
depressional wetlands
located on hydric soil

National Wetlands
Inventory (NWI) data
used to identify current
wetlands
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Methodology

LiDAR and Soil Survey
data used to identify
depressional wetlands
located on hydric soil

National Wetlands
Inventory (NWI) data
used to identify current
wetlands

LiDAR-identified
depressional areas on
layer of SSURGO

data showing hydric
(green) and partially
hydric (pink) soil
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Reductions in Wetland Density

Wetland
Density

High - 06

- Low :0

Van Meter & Basu, Ecological Applications (2015)

Mean Nearest Neighbor Distances: Historical 150 m, Current 197 m

)
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Wetland density in a 3-km radius around the centroid of each wetland


Size-
Frequency
Distributions
of Historical
Wetlands
follow a Power
Law
Relationship
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Figure 4a). Frequency-Area Relationships for Historic Depressional Wetlands in the Des Moines Lobe, and in 3 of the XX different landform types within the lobe. Consistent power law relationships are apparent, with the exponent values being higher for the advance than the moraine. The exponent and coefficients for all the landform types are presented in Table 1.
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Figure 4a). Frequency-Area Relationships for Historic Depressional Wetlands in the Des Moines Lobe, and in 3 of the XX different landform types within the lobe. Consistent power law relationships are apparent, with the exponent values being higher for the advance than the moraine. The exponent and coefficients for all the landform types are presented in Table 1.
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Water Residence Time, t (d

Cheng & Basu (2017)

Smaller wetlands have
faster denitrification
kinetics (similar to
headwater streams)
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Smaller wetlands have high perimeter to volume ratios, providing more
surface area through which water can infiltrate into groundwater.


Presenter Notes
Presentation Notes
the level of the water table and exert control on the hydraulic head (O'Brien 1988; Winter 1988). This provides force for ground water recharge and discharge to other waters as well. The extent of ground water recharge by a wetland is dependent upon soil, vegetation, site, perimeter to volume ratio, and water table gradient (Carter and Novitzki 1988; Weller 1981). Ground water recharge occurs through mineral soils found primarily around the edges of wetlands (Verry and Timmons 1982) The soil under most wetlands is relatively impermeable. A high perimeter to volume ratio, such as in small wetlands, means that the surface area through which water can infiltrate into the ground water is high (Weller 1981). Ground water recharge is typical in small wetlands such as prairie potholes, which can contribute significantly to recharge of regional ground water resources (Weller 1981). Researchers have discovered ground water recharge of up to 20% of wetland volume per season (Weller 1981). 
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Perimeter-Area Ratios
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Perimeter-Area Ratios

reduced species
abundance

251

20

13

10

sum of maximum abundance index

Figure 1. lTowa data for forested wetland edge density,

urban presence or absence, and the sum of maximum
abundance indices for all species

Knutson et al. 1999



The size

Distribution

Matters...

Ioglcal Diversity.
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Small Wetlands as
Biogeochemical Hotspots

—m— e ——

Data
Synthesis

Modeling



Meta-Analysis of Nutrient Processing Rates

Collected data from approximately
600 water bodies relating to
nitrogen and phosphorus
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Water Resources Research

RESEARCH ARTICLE

10.1002/2016WR020102

Biogeochemical hotspots: Role of small water bodies in
landscape nutrient processing
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Modeling Nitrogen Removal in Wetlands

Assuming first-order
removal kinetics

Tis the water residence time [hydrology]

k is the first-order removal rate constant [biogeochemistry]

Fractional ™k will result in higher removal
N Removal



31

Small wetlands are
more reactive

Nutrient processing rate
constants scale inversely with
residence times and size

Small wetlands have a higher
sediment to water ratio

i.e. more contact between

denitrifying bacteria and

nitrogen in water in small
systems

Kqy = 0.38 T 09
r2=0.71

o Wetlands
o Lakes
a Reservoirs




Modeling Nitrogen Removal in Wetlands

Assuming first-order Input mass (M) Output mass (M)
removal kinetics Mass

= (1 — e*1)

How do we get residence times for T=— T X SA
large wetlandscapes with hundreds Q

or thousands of wetlands? Residence Time is

Residence Time = Volume/Water Flux proportional to
Surface Area
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No net loss wetlands policy

“The goal of the policy is to balance
wetland loss due to economic
development with
wetlands reclamation, mitigation,
and restorations efforts, so that the
total acreage of wetlands in the
country does not decrease, but
remains constant or increases.”



https://en.wikipedia.org/wiki/Economic_development
https://en.wikipedia.org/wiki/Land_reclamation
https://en.wikipedia.org/wiki/Ecological_restoration

What wetlands should be protected or restored?

Small or large wetlands of the
same total area?




Landscape Wetland Losses

1.0 F Losing small
r ' wetlands first
>
S 08 [
L
I
S 306
o =
wd
Z 504
T QD
= 0.2
3
S
2
3
0.0 | | | |
0.0 0.2 0.4 0.6 0.8

Fractional Wetland Area Lost



Preferential Losses in the Landscape
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How can wetland restoration contribute to improvements in water quality?
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Which wetland will remove more nitrate???

803171340




Modeling Nitrogen Removal in Wetlands

Assuming first-order Input mass (M) Output mass (M)
removal kinetics Mass
ﬂ lremoved [ I
p = e
We need to know how
R = p * Min much N mass is entering
1 the wetland to estimate N
removal!
Fractional Mass

N Removal Removed



TREND-Nitrogen County-Scale N Surplus

Biological N Fertilizer
Fixation N
) Crop Pasture
Atmospheric N Uptake N Uptake
N Deposition Manure N
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County-Scale N Surplus

(inputs — outputs)

Byrnes, Van Meter, et al. (2020), GBC
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How much nitrate is being removed by current wetlands?

a National Wetlands Inventory c Nitrogen surplus dataset ()
N Wetland N input (M, )
. . M, = f[Nsurp]
b Size-dependent removal rates S

N removal-rate
constant, k (d-)

Water residence
time, r (d)
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Nitrogen removal — watershed scale

e N removal at
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Mass removal
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Cheng, Van Meter et al., Nature (2020)



How much nitrate is being removed by current wetlands?

National Wetlands Inventory c Nitrogen surplus dataset (Nsurp)

N removal-rate
constant, k (d-)

Water residence time, 7 (d)

Water residence
time, r (d)

Wetland N input (M, )
Min = f[Nsurp]

d N removal at wetland scale (Rued
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Cheng, Van Meter et al., Nature (2020)



How much nitrate is being removed by current wetlands?

National Wetlands Inventory c Nitrogen surplus dataset (Nsurp)

N removal-rate
constant, k (d-)

Water residence time, 7 (d)
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Water residence
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Cheng, Van Meter et al., Nature (2020)



How much nitrate is being removed by current wetlands?

a National Wetlands Inventory c Nitrogen surplus dataset ()

N Mass Removal

Wetland N input (M, )
Min = f[Nsurp]

d N removal at wetland scale (Rued
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N removal-rate
constant, k (d-)

Water residence time, 7 (d)

—_—

Water residence
time, r (d)

Wetland N removal R, = M, (1 - ™"

Surface area, SA (m?)
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e N removal at
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Mass removal

Low High

Cheng, Van Meter et al., Nature (2020)



Most areas with higher wetland densities have little surplus N

N surplus (kg N ha™' yr~1)

Wetland density

Cheng, Van Meter et al. 2020 (Nature)



How can wetland restoration contribute to improvements in water quality?

TREND-Nitrogen County-Scale N Surplus

Byrnes, Van Meter,
etal. 2020

250-m Grid-Scale N Surplus



How much nitrate could be removed with wetland restoration?

National Wetlands Inventory c Nitrogen surplus dataset (Nsurp)
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Water residence time, 7 (d)

Water residence
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Cheng, Van Meter et al., Nature (2020)



How much nitrate could be removed with wetland restoration?

a National Wetlands Inventory c Nitrogen surplus dataset {Nsurp)
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Wetland Restoration Strategies 10% increase in

wetland area

SCH1
Random placement

Restored wetland area (ha km™) -
1 2 3 4 >5

Cheng, Van Meter et al., Nature (2020)
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Presentation Notes
No placement of new/ restored wetlands was allowed in any of the simulations in areas with the following land cover designations: (1) open water; (2) developed land (open space, low intensity, medium intensity, high intensity); (3) barren land; (4) shrubland; and (5) wetland.


Wetland Restoration Strategies

L' s

SC2
No agricultural land loss

Restored wetland area (ha km™) . P

1 2 3 4 >5 Cheng, Van Meter et al., Nature (2020)
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No placement of new/ restored wetlands was allowed in any of the simulations in areas with the following land cover designations: (1) open water; (2) developed land (open space, low intensity, medium intensity, high intensity); (3) barren land; (4) shrubland; and (5) wetland.


Wetland Restoration Strategies

SC3
Targeted restoration

Restored wetland area (ha km-2)

1 2 3 4 >5 Cheng, Van Meter et al., Nature (2020)
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No placement of new/ restored wetlands was allowed in any of the simulations in areas with the following land cover designations: (1) open water; (2) developed land (open space, low intensity, medium intensity, high intensity); (3) barren land; (4) shrubland; and (5) wetland.


SCH
Random placement

Sc2
No agricultural land loss

SC3
Targeted restoration

Wetland N removal

Total removal
187 + 97 kt

Total removal
20 + 10 kt

Total removal
809 + 395 kt

Wetland N removal (kg ha™ yr)
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can optimize water quality benefits
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Random placement

Sc2
No agricultural land loss

SC3
Targeted restoration

Wetland N removal

Targeted wetland restoration efforts

can optimize water quality benefits
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How can wetland restoration contribute to improvements in water quality?

Agriculture in the Mississippi River Basin

0 ° N ' e

@ Ethanol plant
() com Beit
@ Dead zone

Total nitrogen used on crops {
Kilograms per square kilometre per year == \

| Less than 10 Texas - \
_|10to 10 isiana /"‘Jﬂ“; \
__| 100 to 500 : ~ M/ R
L > |
{11 More than 1 000 4 e

Nutrient Task Force, Gulf Hypoxia Annual Report, 2009;
USDA statistics on-line, accessed in March 2010.

Wetlands in the Mississippi River Basin currently
remove approximately 440 ktons N per year

Without A targeted 22% increase in
existing wetland area in the Mississippi
wetlands, N River Basin could result in an
loads in the approximately 40% decrease
MRB would be in N loads—bringing us closer
~50% higher to policy goals for improving
than they are water quality in the Gulf of
now. Mexico.

Cheng, Van Meter et al., Nature (2020)
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